N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents
نویسندگان
چکیده
Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.
منابع مشابه
Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators.
The neuronal dipeptide N-acetylaspartylglutamate (NAAG) is thought to be synthesized enzymatically from N-acetylaspartate (NAA) and glutamate. We used radiolabeled precursors to examine NAA and NAAG biosynthesis in SH-SY5Y human neuroblastoma cells stimulated with activators of protein kinase A (dbcAMP; N6,2'-O-dibutyryl cAMP) and protein kinase C (PMA; phorbol-12-myristate-13-acetate). Differe...
متن کاملEffects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.
Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the ...
متن کاملThe biologic role of ganglioside in neuronal differentiation--effects of GM1 ganglioside on human neuroblastoma SH-SY5Y cells.
Human neuroblastoma SH-SY5Y cell is a cloned cell line which has many attractive features for the study of neuronal proliferation and neurite outgrowth, because it has receptors for insulin, IGF-I and PDGF. Gangliosides are sialic acid containing glycosphingolipids which form an integral part of the plasma membrane of many mammalian cells. They inhibit cell growth mediated by tyrosine kinase re...
متن کاملNeuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A.
We investigated the effect of retinoic acid (RA) and herbimycin A (herb-A) on cell growth, cell differentiation, and colony formation of human neuroblastoma cell lines. The neuroblastoma line SK-N-SH expressed both neuroblast and nonneuronal phenotypes, whereas its subclone SH-SY5Y and the Kelly cell line were predominantly neuroblastic. Both herb-A and RA, given alone, moderately reduced cell ...
متن کاملRheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells
Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...
متن کامل